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TASK SCHEDULING USING VIRTUAL
CLUSTERS

TECHNICAL FIELD

The present disclosure relates generally to cloud comput-
ing systems, and, more particularly, to task scheduling using
virtual clusters.

BACKGROUND

Generally, the “cloud” refers to computing resources,
such as software, services, and information, connected via a
network, e.g., the Internet. “Cloud computing” can thus be
defined as Internet-based computing in which these com-
puting resources are dynamically provisioned and allocated
to client or user computers or other devices on-demand from
a pool of resources available via the cloud. Cloud computing
is envisioned as a way to allocate access to these resources
according to particular needs of a user. One application of
cloud computing is to process multi-phase, distributed com-
puting jobs. In these types of applications, the data is divided
up and processed in parallel by multiple tasks during each
execution phase, thereby reducing the total amount of time
to complete the job.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1 illustrates an example communication network;

FIG. 2 illustrates an example network device/node;

FIG. 3 illustrates an example multi-phase computing job;

FIG. 4 illustrates example computing racks having com-
puting resources;

FIG. 5 illustrates an example resource allocation process;

FIG. 6 illustrates example virtual clusters of computing
resources;

FIG. 7 illustrates the clusters of FIG. 6 implemented
within the computing racks of FIG. 4;

FIG. 8 illustrates an example simplified procedure for
scheduling tasks using virtual clusters of computing
resources;

FIG. 9 illustrates an example simplified procedure for
generating virtual clusters of computing resources; and

FIG. 10 illustrates an example simplified procedure for
using virtual clusters within a rack aware scheduler.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

According to one or more embodiments of the disclosure,
a device receives information regarding a data set to be
processed by a map-reduce process. The device generates a
set of virtual clusters for the map-reduce process based on
network bandwidths between nodes of the virtual clusters,
each node of the virtual cluster corresponding to a resource
device, and associates the data set with a map-reduce
process task. The device then schedules the execution of the
task by a node of the virtual clusters based on the network
bandwidth between the node and a source node on which the
data set resides.
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Description

A computer network is a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available,
ranging from local area networks (LANs) to wide area
networks (WANSs). LANs typically connect these nodes over
dedicated private communications links located in the same
general physical location, such as a building or campus.
WAN:S, on the other hand, typically connect geographically
dispersed nodes over long-distance communications links,
such as common carrier telephone lines, optical lightpaths,
synchronous optical networks (SONET), synchronous digi-
tal hierarchy (SDH) links, etc.

For example, FIG. 1 illustrates an example computer
network 100 illustratively comprising a plurality of devices,
such as a client device(s) 110, a centralized computing
device (e.g., a server, a head-end application device, a
network management server or “NMS,” etc.) 120, and a
plurality of other devices 130 (e.g., “A,” “B,” “C,” etc.),
generally referred to as “resources” herein. Generally, the
client device 110, computing device 120, and the plurality of
resource devices 130 may be interconnected by a network
140, for example, WANs (e.g., the Internet), LANSs, etc.,
through various methods of communication, such as wired
and/or wireless links. Those skilled in the art will understand
that any number of computing resources, devices, links, etc.
may be used in network 100, and that the view shown herein
is for simplicity.

Data packets 150 (e.g., attribute information 170 and/or
requests 180 and responses 185, as described below) may be
exchanged among the nodes/devices of the computer net-
work 100 using predefined network communication proto-
cols as will be understood by those skilled in the art. In this
context, a protocol consists of a set of rules defining how the
nodes interact with each other.

FIG. 2 is a schematic block diagram of an example
computing device 200 that may be used with one or more
embodiments described herein, e.g., particularly as comput-
ing device 120 or in certain embodiments client device(s)
110 (e.g., for client-side operation of the techniques herein).
The device 200 may comprise one or more network inter-
faces 210, at least one processor 220, and a memory 240
interconnected by a system bus 250. Network interface(s)
210 contain the mechanical, electrical, and signaling cir-
cuitry for communicating data over links coupled to network
100. The network interfaces 210 may be configured to
transmit and/or receive data using a variety of different
communication protocols, as will be understood by those
skilled in the art.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by processor 220 for storing
software programs and data structures associated with the
embodiments described herein. The processor 220 may
comprise necessary elements or logic adapted to execute the
software programs and manipulate data structures 245.
Operating systems 242, portions of which are typically
resident in memory 240 and executed by the processor,
functionally organizes the device by, inter alia, invoking
operations in support of software processes and/or services
executing on the device. These software processes and/or
services may comprise an illustrative “resource allocation”
process/service 244, as described herein.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
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readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it is
expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while the processes have
been shown separately, those skilled in the art will appre-
ciate that processes may be routines or modules within other
processes.

For example, processor 220 can include one or more
programmable processors, €.g., microprocessors or micro-
controllers, or fixed-logic processors. In the case of a
programmable processor, any associated memory, e.g.,
memory 240, may be any type of tangible processor readable
memory, e.g., random access, read-only, etc., that is encoded
with or stores instructions that can implement program
modules, e.g., a module having resource allocation process
244 encoded thereon. Processor 220 can also include a
fixed-logic processing device, such as an application specific
integrated circuit (ASIC) or a digital signal processor that is
configured with firmware comprised of instructions or logic
that can cause the processor to perform the functions
described herein. Thus, program modules may be encoded in
one or more tangible computer readable storage media for
execution, such as with fixed logic or programmable logic,
e.g., software/computer instructions executed by a proces-
sor, and any processor may be a programmable processor,
programmable digital logic, e.g., field programmable gate
array, or an ASIC that comprises fixed digital logic, or a
combination thereof. In general, any process logic may be
embodied in a processor or computer readable medium that
is encoded with instructions for execution by the processor
that, when executed by the processor, are operable to cause
the processor to perform the functions described herein.

As noted above, cloud computing can be defined as
Internet-based computing in which computing resources are
dynamically provisioned and allocated to client or user
computers or other devices on-demand from a collection of
resources available via the network (e.g., “the cloud”).
Cloud computing resources, for example, can include any
type of resource such as computing, storage, and network
devices, VMs, edge computing devices, etc. For instance,
resources may include service devices (firewalls, deep
packet inspectors, traffic monitors, etc.), processing devices
(brute force processing capability), storage devices (e.g.,
servers, network attached storages, storage area network
devices), etc.

Cloud computing, in particular, is envisioned as a way to
allocate access to these resources according to particular
needs of a user. However, as mentioned, allocating access to
these resources presents various challenges. For example,
there are an ever increasing number of computing resources
within the cloud possessing an ever increasing variety of
capabilities and attributes, and, further, there are an ever
increasing number of users having various computing needs.
Selecting particular resources for a given task is thus a
complex problem. For multi-phase computing jobs executed
in a cloud computing environment, these challenges are
enhanced since the size of intermediate data sets between
phases can vary.

A simple example of a multi-phase, distributed computing
job is provided by the map-reduce framework. A map-
reduce job has two phases of execution: a mapping phase
and reducing phase. In each phase, one or more tasks are
scheduled to run in parallel on different machines of the
cloud computing environment. A job scheduler may be used
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to coordinate where and how the tasks in each phase are
executed, to optimize the overall execution of the job. A
specialized file system may also be used for query process-
ing and temporary data storage (e.g., the Hadoop File
System (HDFS) by the Apache Software Foundation, etc.).
Such file systems are often deployed in large datacenters
with powerful hardware, especially on bare metal under fast
servers with high speed disks.

Some prior attempts to optimize the scheduling of map-
reduce tasks have focused on equalizing the amount of
resources allocated to the different tasks over time. Such
“fair” schedulers operate to ensure that all tasks get an equal
amount of computing resources over time. These approaches
work relatively well for computation-intensive jobs, since
the processing load is balanced across the resources. For I/O
intensive jobs and jobs with high traffic between resources
(e.g., passing data between tasks executed by different
resources), however, these approaches are sub-optimal since
they do not take into account available network resources or
transfer times between processing nodes.

Other prior attempts to optimize the scheduling of map-
reduce tasks have attempted to account for data transfer
times by focusing on the relationships between the physical
resource devices. For example, the Hadoop rack aware
scheduler assigns tasks to resources using a hierarchy that is
based on how the database racks executing the tasks are
organized. For example, a rack aware scheduler may attempt
to schedule a task for the next phase of processing at the
same node that generated the data block to be processed in
the previous phase. If this fails due to constraints on com-
puting resources on the node, the scheduler will try to
schedule the tasks on nodes within the same rack. If this
fails, the scheduler will then pick a processing node on a
different rack. The underlying assumption in this approach,
however, is that the connections between nodes, disk speeds,
etc., are the same for each node at a given level in the
hierarchy. This assumption does not hold in many situations,
such as edge computing scenarios in which processing nodes
are at the edge of the network and have lower uplink
bandwidths.

Thus far, existing map-reduce scheduling techniques fail
to take into account network resources, such as the available
bandwidth between processing nodes, when assigning
resources to a task. Moreover, existing scheduling tech-
niques fail to dynamically adjust for changes in the network
topology and/or changes in the available network resources.

The techniques herein, on the other hand, enable a
resource allocation process (e.g., a task scheduler) to sched-
ule tasks of a multi-phase computing job using virtual
clusters of computing resource nodes. The virtual clusters
may be based on the actual network resources between the
computing resource nodes, as opposed to arbitrary heuristic
or homogenous network assumptions. In other words, the
resource allocation process takes into account the actual
network resources available when scheduling the transfer of
intermediate data sets between different phases of the com-
puting job.

Specifically, according to one or more embodiments of the
disclosure as described in further detail below, information
regarding a data set to be processed by a map-reduce process
is received at a device. A set of virtual clusters for the
map-reduce process is also generated based on network
bandwidths between nodes of the virtual clusters, each node
of'the virtual cluster corresponding to a resource device. The
data set is associated with a map-reduce process task. The
execution of the task by a node of the virtual clusters is then
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scheduled based on the network bandwidth between the
node and a source node on which the data set resides.

Tlustratively, the techniques described herein may be
performed by hardware, software, and/or firmware, such as
in accordance with the resource allocation process 244,
which may contain computer executable instructions
executed by the processor 220 to perform functions relating
to the techniques described herein.

Operationally, the resource allocation process 244, or,
more generally, the device 200, e.g., computing device 120,
first gathers information that represents the capability attri-
butes or “resource properties” of resource devices within the
network 100. This information may be represented, for
example, by attribute information 170 sent from resource
devices 130 in the network 100 and received by computing
device 120, as depicted in FIG. 1. Notably, the information
representing the capability attributes of devices in the data
center may be received in real-time, i.e., as the capability
attributes for a device changes, the device sends information
representing the latest/updated capability attribute. A variety
of techniques may employed for the reception of this attri-
bute information 170 containing capability attributes of
resources, such as publish-subscribe, polling/querying, etc.

For example, resources such as server resources, as well
as the access switches, routers, firewall devices, load bal-
ancers, storage devices, etc. in the network (e.g., within one
or more data centers), may send messages, e.g., attribute
information 170, that contain an indication of their respec-
tive resource properties to the computing device 120. That
is, each of these resources has a corresponding set of
resource property values or attributes that are useful for
purposes of management and provisioning service requests
in a manner that is optimal to both the requestor, e.g., client
device 110 (such as a customer), and a cloud service
provider. As an example, these property values or capability
attributes can include any one or more of the following: a
central processing unit (CPU) count, a CPU speed, processor
unit utilization, an available memory, hypervisor type,
power consumption; amount of local storage availability,
average load, a number of VM resources, number of load
balancers, outgoing/downlink bandwidth, an incoming/up-
link bandwidth, an average incoming delay, an average
outgoing delay, a communication jitter metric, a longitude
and latitude, etc. Notably, the set of particular attributes/
properties discovered may vary over time, depending upon
configuration and/or device capabilities.

Attribute information 170 may also include data regarding
the status of tasks distributed to resource devices as part of
a multi-phase computing job. In particular, attribute infor-
mation 170 may include data indicative of the size of an
intermediate data set generated during one of the phases of
the overall computing job. For example, if the multi-phase
computing job is a map-reduce process, attribute informa-
tion 170 may include the number of key-value pairs gener-
ated by the mapping tasks distributed to the various resource
devices in the network as part of the mapping phase of the
job. In another example, attribute information 170 may
include the amount of memory used to store an intermediate
data set.

In one embodiment, attribute information 170 includes
data regarding the network connecting the resource devices
available to a multi-phase computing job. Such network
resource data may include, for example, data regarding the
network topology of the cloud computing environment (e.g.,
how the resource devices are interconnected) and the
throughput capabilities of the network connections between
the resource devices. For example, attribute information 170
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may include information regarding the total possible con-
nection bandwidth between two resource devices. Attribute
information 170 may also include data regarding the avail-
able network bandwidth between two resource devices. The
total possible bandwidth and available bandwidth between
two resource devices may differ, for example, if other tasks
outside of the computing job also pass data between the two
resource devices.

Upon receiving the attribute information 170 from
resource devices 130, the resource allocation process 244 of
the central computing device 120 may then use this infor-
mation to assign the tasks for the next phase of processing
to other resource devices 130. For example, as shown in
FIG. 3, resource allocation process 244 may receive data
regarding the size of intermediate data sets generated in
parallel by resource devices 130 in the cloud computing
environment as part of a multi-phase, distributed computing
job 300. For illustrative purposes only, resource allocation
process 244 is shown to allocate resources as part of a
map-reduce process, which includes a mapping phase and a
reducing phase. However, those skilled in the art will
appreciate that the functionality described herein may be
used to allocate resources in any type of multi-phase,
distributed computing job having any number of task
phases.

According to the embodiments herein, resource allocation
process 244 assigns tasks for each phase of computing job
300 to VMs executed by resource devices 130. Any number
of VMs may be executed on a particular resource device, at
any given time. For example, a particular resource device
may execute multiple VMs that process data as part of
computing job 300, different VMs assigned to different
computing jobs, etc. The VMs executed by resource devices
130 may each have its own set of computing resource
allocations, such as an allocated amount of physical memory
and/or processing power. Thus, each VM may be treated by
resource allocation process 244 as its own independent
resource device, in some cases. In various embodiments, a
VM may be preexisting on one of resource devices 130 at
the time when resource allocation process 244 assigns a
phase task to it or may cause the VM to be created as part
of the task assignment. The VMs of resource devices 130
may be executed in bare metal environments (e.g., where the
VM hypervisor runs directly on the hardware of the device)
or within hosted environments (e.g., where the VM hyper-
visor runs within an operating system of the device on top
of the hardware).

As shown, resource allocation process 244 receives data
regarding an input data set 302 for processing by computing
job 300. In response, resource allocation process 244 divides
the data set 302 into any number of data subsets to be
processed in parallel. For example, resource allocation pro-
cess 244 may divide data set 302 into n-number of data
subsets to be processed by n-number of mapper tasks (e.g.,
a first mapper task 308 through an nth mapper task 310)
executed by n-number of VMs (e.g., a first VM 304 through
an nth VM 306). In one embodiment, the maximum number
of tasks/VMs available to computing job 300 at any given
phase of computing job 300 may be limited. For example,
the number of tasks in any given phase of computing job 300
may be limited by a user’s configuration, a policy of the
cloud computing environment, etc.

Mapper tasks 308-310 are configured to process the
subdivided data set 302 into n-number of intermediate data
sets 312-314 (e.g., a first intermediate data set 312 through
an nth intermediate data set 314). As part of a map-reduce
process, intermediate data sets 312-314 are key-value pairs
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generated by mapper tasks 308-310 from the subdivided
input data set 302. For example, assume that data set 302
includes a listing of baseball teams and the number of wins
each team had per year. Also, assume that computing job 300
is used to identify the maximum number of wins each team
had for any given year (e.g., the best season of each team).
In such a case, mapper tasks 308-310 may use the names of
the teams as key values and the wins per year as values
associated with the name keys. Thus, intermediate data set
312 may include a number of key-value pairs that associate
a given baseball team with values that correspond to the
number of wins by that team in a given year.

As part of the next phase of computing job 300, m-num-
ber of reducer tasks 320- (e.g., a first reducer task 320
through an mth reducer task 322) process intermediate data
sets 312-314 to generate m-number of result subsets 324-
326 (e.g., a first result subset 324 through an mth result
subset 326). For example, if intermediate data sets 312-314
are of the following format: <team 1><#wins in year 1>,
<team 1><#wins in year 2>, etc., reducer processes 320-322
may search through the key-value pairs to identify the
greatest number of wins per team. In other words, result
subsets 324-326 include only the key-value pairs that cor-
respond to each team’s maximum number of wins for any
year. Result subsets 324-326 are then combined to form the
final results 330. For example, final results 330 may include
a listing of each baseball team, followed by the number of
wins each team had in its best season.

In various embodiments, resource allocation process 244
receives data indicative of the sizes of intermediate data sets
312-314 from VMs 304-306 and uses this information to
allocate reducer tasks 320-322 to VMs 316-318. For
example, resource allocation process 244 may receive data
indicative of the number of bytes occupied by each of
intermediate data sets 312-314, the number of key-value
pairs in each of intermediate data sets 312, 314, or the like.
Resource allocation process 244 may use the size informa-
tion to identify which of VMs 316-318 are appropriate to
execute reducer tasks 320-322. For example, assume that
intermediate data set 312 is twice as large as intermediate
data set 314. In such a case, resource allocation process 244
may allocate reducer task 322 to process intermediate data
set 312 and reducer task 320 to process intermediate data set
314, if VM 318 has double the computational resources as
that of VM 316. In further embodiments, resource allocation
process 244 may base the assignment of intermediate data
sets 312-314 to reducer tasks 320-322 based on the network
bandwidth between VMs 304-306 and VMs 316-318. For
example, if intermediate data set 314 is the largest interme-
diate data set, it may be assigned to reducer task 320 if the
network connection between VM 306 and VM 316 has the
highest bandwidth and VM 316 has the computational
resources to process intermediate data set 314.

As noted previously, VMs 304-306 and 316-318 may each
be executed within computing resource nodes which corre-
spond to the physical hardware of resource devices 130.
Thus, a relationship between the VMs/computing resource
nodes may be determined based on the hardware relation-
ships between resource devices 130. For example, FIG. 4
illustrates example computing racks 402-404 subdivided
into a plurality of computing resource nodes. For illustrative
purposes only, the relationships between computing
resource nodes on two racks are shown. However, those
skilled in the art will appreciate that a cloud computing
environment may include any number of mainframe racks
located at the same or different physical locations.
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According to embodiments herein, rack 402 may be
represented as a plurality of computing resource nodes
410-412 (e.g., a first computing resource node through an
nth computing resource node). Similarly, rack 404 may be
represented as a plurality of computing resource nodes
414-416 (e.g., a first computing resource node through an
mth computing resource node). Racks 402, 404 may or may
not have the same number of associated computing resource
nodes, in various embodiments. Each of computing resource
nodes 410-412 and 414-416 has an associated amount of
computing resources available to it. For example, computing
resource node 410 may have an associated amount of
processing power and/or allotted memory space in rack 402.
In various embodiments, resource nodes 410-412 and 414-
416 are hardware-based computing devices within each
rack, such as blade servers, in which the corresponding VMs
are executed.

As shown, racks 402, 404 are physically networked via
top of rack (TOR) switches 406, 408, respectively. Thus,
data may be transferred between racks 402, 404 via TOR
switches 406, 408. Any number of networking devices may
exist between TOR switches 406, 408, such as aggregation
switches, fiber optic cabling, etc., to facilitate the exchange
of data between racks 402, 404.

In one embodiment, a hierarchy may be generated to
represent the relationships between computing nodes 410-
412 and 414-416. For example, each computing node within
a given rack may be represented on the same level of the
hierarchy (e.g., each of computing resource nodes 410-412
may be located on the same level of the hierarchy). Above
the node levels in the hierarchy are the TOR switches 406,
408. In other words, computing resource nodes 410-412 may
be represented as one branch of the hierarchy under TOR
switch 406 and computing resource nodes 414-416 may be
represented as another branch of the hierarchy under TOR
switch 408.

A map-reduce task scheduler may naively use the
depicted hierarchy of computing nodes 410-412, 414-416 to
assign tasks to VMs. For example, assume that VM 304
shown in FIG. 3 is run on computing resource node 410. In
such a case, mapper task 308 executed within VM 304
generates intermediate data set 312, which is stored within
the memory of computing resource node 410. Under a naive
approach, resource allocation process 244 may first attempt
to assign reducer task in the next phase of processing to
computing resource node 410. If computing resource node
410 does not have sufficient computing resources available,
resource allocation process 244 may then attempt to assign
the reducer task to computing resource node 412, since
nodes 410 and 412 are on the same rack 402. If no com-
puting resource nodes have sufficient resources to process
the reducer task, resource allocation process 244 may then
attempt to schedule the reducer task on a computing
resource node on a different rack (e.g., on computing
resource node 414 on rack 404. Such an approach, however,
naively assumes that each of the computing resource nodes
within a given rack share the same bandwidth. Similarly, the
network bandwidth between computing resource nodes on
different nodes is also assumed to be constant.

Referring now to FIG. 5, resource allocation process 244
receives network data 502 and uses network data 502 to
organize computing resource nodes into virtual clusters,
according to one embodiment. As shown, resource alloca-
tion process 244 may receive various data regarding the
available computing resources 512 and network resources
502 of the cloud computing environment (e.g., as part of
attribute information 170 received by computing device
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120). Based on network resources 502 and computing
resources 512, resource allocation process 244 generates
resource allocations 510 and provides instructions to the
corresponding resource devices regarding the allocations. In
other words, resource allocations 510 may indicate the
assignment of map-reduce tasks to resource devices. For
example, resource allocations 510 may include an instruc-
tion sent by resource allocation process 244 to a particular
resource device to spawn a VM/map-reduce task at a par-
ticular computing resource node, to process a data set from
the previous phase of the computing job.

In one embodiment, resource allocation process 244
includes a traditional, rack-aware scheduler 508 that assigns
tasks to VMs within a map-reduce framework. Rack-aware
scheduler 508 may be configured, in some cases, to base
map reduce task assignments on the available computing
resources at each resource device and on a naive relationship
between the resource devices. For example, rack-aware
scheduler 508 may coordinate the assignment of tasks to
resource devices based in part on computing resources 512
received by resource allocation process 244. Computing
resources 512 may include data such as the amount of
memory available at a particular computing resource node
and/or device, the amount of processing resources available
at the computing resource node and/or device (e.g., the
instructions per second available by the resource’s proces-
sor, a measure of the processor’s clock speed, etc.), or the
like. In some embodiments, rack-aware scheduler 508 may
also utilize the hierarchy of computing resource nodes
depicted in FIG. 4 to assign tasks to VMs for different phases
of the map-reduce computing job (e.g., by attempting to first
assign a task to the same node, then to a node on the same
rack, etc.).

According to various embodiments, resource allocation
process 244 also includes a cluster generator 504 configured
to generate virtual clusters 506 based on the network
resources 502 received by resource allocation process 244.
In general, network resources 502 include information
regarding the available bandwidths between computing
resource nodes associated with resource devices 130. Band-
width between networked devices may be dynamically
measured using probes, obtained from a network aware
scheduler if a software defined networking (SDN) layer is
used, or using any other bandwidth detection mechanism. In
one embodiment, network resources 502 also include infor-
mation regarding the topology of the network. The data in
network resources 502 may be generated using a device
discovery protocol in which the devices on the network
provide information regarding their identities, capacities
(e.g., available bandwidth, total bandwidth, etc.), and neigh-
boring devices. For example, network resources 502 may be
generated in part using the link layer discovery protocol
(LLDP) or another such network device discovery protocol.

Cluster generator 504 may represent the topology indi-
cated in network resources 502 as a graph G(V,E) in which
the vertices V represents individual computing resource
nodes in the network and the edges E between the vertices
represents the network connections between the computing
resource nodes. In one embodiment, cluster generator 504
weights the edges E of the graph based on the available
bandwidth between the respective resource nodes indicated
in received network resources 502. For example, the graph
edges may be weighted by cluster generator 504 using the
named throughputs supported by the resource devices/com-
puting resource nodes (e.g., 1 Gbps, 10 Gbps, etc.). In some
cases, cluster generator 504 may adjust the edge weights to
account for network allocations to other processes. For
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example, cluster generator 504 may subtract these band-
widths from the named throughputs and use the resulting
bandwidths as edge weights, to account for non-map-reduce
workloads and other processes running on the same resource
devices and consuming a portion of the network resources.
Cluster generator 504 then uses a clustering technique on the
graph to group the graph vertices into interconnected clus-
ters.

In one embodiment, cluster generator 504 generates vir-
tual clusters 506 using a clustering technique such that the
inter-cluster available bandwidth in virtual clusters 506 is
much lower than the intra-cluster available bandwidth. For
example, cluster generator 504 may use a k-cut methodol-
ogy to generate a set of clusters (e.g., clusters C, to C,) in
virtual clusters 506 that each has a lower inter-cluster
bandwidth than an intra-cluster bandwidth. The membership
of each graph vertex/computing resource node in each
cluster may be automatically configured by resource allo-
cation process 244, using such an approach. In another
embodiment, virtual clusters 506 may be manually config-
ured by a user based on the computation results of cluster
generator 504 (e.g., a user may override certain cluster
assignments, may alter the constraints used by cluster gen-
erator 504 to generate the clusters, etc.). As will be appre-
ciated by one skilled in the art, other clustering techniques
may also be used, such as nearest neighbor clustering,
clustering techniques that impose a limit on the number of
clusters, or the like. In further embodiments, cluster gen-
erator 504 may attempt to optimize the transfer of data sets
between computing resource nodes for inter-cluster commu-
nication using compression and using techniques from net-
work coding.

Virtual clusters 506 may be updated by cluster generator
504 at any time. For example, virtual clusters 506 may be
updated as a periodic job (e.g., nightly, weekly, etc.) or in
response to a detected change in the bandwidth between
computing resource nodes. In one embodiment, virtual clus-
ters 506 are regenerated by cluster generator 504 in response
to receiving a network topology change notification. In such
a case, cluster generator 504 determines the bandwidths
between the resource devices in the changed topology and
generates a new set of virtual clusters 506 based on the
bandwidths in the changed network topology.

In one embodiment, virtual clusters 506 are treated by
rack-aware scheduler 508 as virtual mainframe racks. For
example, each rack, used by rack-aware scheduler 508 to
schedule the execution of tasks may be mapped to a corre-
sponding virtual cluster C, in virtual clusters 506. In other
words, the techniques described herein may be used with a
rack-aware scheduler that uses a rack-based hierarchy of
resources to allocate computing resources to map-reduce
tasks. In other embodiments, rack-aware scheduler 508 may
be combined with cluster generator 504 and process the
virtual clusters directly (i.e., without treating each cluster as
an actual rack).

FIG. 6 illustrates one example of virtual clusters of
computing resource nodes that may be generated by cluster
generator 504, in one embodiment. As shown, cluster gen-
erator 504 may generate a map 600 having vertices 602-616
that correspond to individual computing resource nodes in a
cloud computing environment. Each of vertices 602-616 are
connected to one or more other vertices in map 600 via
edges 620-636 that correspond to network paths over which
data can be transferred between computing resource nodes.
For example, a computing resource node represented by
vertex 602 may share a network connection (e.g., within a
given rack, between racks, etc.) with another computing
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resource node represented by vertex 606. Edges 620-636 of
map 600 are formed based on the network topology con-
necting the computing resource nodes. In some embodi-
ments, edges 620-636 are weighted using the total or avail-
able bandwidths along each of the network connections. For
example, edge 634 may be weighted based on vertices 608
and 610 sharing a network connection that has an available
bandwidth of 1 Gigabyte per second.

A clustering technique is used on vertices 602-616 to form
virtual clusters 640-644. For example, virtual cluster 640 is
shown to include vertices 602-606, 642 is shown to include
vertices 608-612, and virtual cluster 644 is shown to include
vertices 614-616. In one embodiment, the clustering tech-
nique may form virtual clusters 640-644 such that the
inter-cluster edge weights between clusters 640-644 are
much lower than the edge weights within each cluster. In
other words, the membership of vertices in each of the
clusters may be determined such that data can be transferred
faster within a given cluster than between different clusters.
For example, edge 634 that connects virtual clusters 642 and
644 has a weighting that corresponds to an available band-
width of 1 Gigabyte over the network connection that
connects the two clusters. In contrast, vertices 614 and 616
within virtual cluster 644 share a network connection having
a much higher available bandwidth of 10 Gigabytes per
second, as indicated by the weighting of edge 636.

A map-reduce task scheduler, such as resource allocation
process 244, may use virtual clusters 640-644 to assign a
task to a VM running on a particular computing resource
node. In particular, resource allocation process 244 may
assess the current location of the data set as it relates to the
other nodes in virtual clusters, to assign a node in one of the
clusters to process the data set. For example, if the data set
generated in the prior phase of the job is located on the
computing resource corresponding to vertex 614, the sched-
uler may first attempt to assign the task for the next phase of
the job to the same computing resource node (i.e., also to
vertex 614). If insufficient computing resources are available
at vertex 614, the scheduler may then attempt to schedule the
task for the next phase at the computing resource node
corresponding to vertex 616, since vertices 614 and 616
belong to the same virtual cluster 644. If vertex 616 also
lacks the necessary computing resources to execute the task,
the scheduler may then look to vertices in other clusters,
such as virtual cluster 642. Thus, resources may be allocated
by the scheduler such that the transfer of data sets between
phases of processing is optimized.

Since clusters 640-644 are generated based on the avail-
able network resources between the computing resource
nodes, the physical proximity of the computing resource
nodes is effectively disregarded (i.e., clusters 640-644 are
“virtual” clusters of computing resource nodes). FIG. 7
illustrates one example of the virtual clusters 640-644 imple-
mented within the computing racks 402-404 of FIG. 4,
according to one embodiment. As shown, computing
resource node 410 on rack 402 and computing resource
nodes 414, 416 on rack 404 may belong to the same virtual
cluster 640. Similarly, computing resource node 412 on rack
402 may belong to virtual cluster 642. Thus, computing
resource nodes 410 and 414 belong to different virtual
clusters, i.e., virtual clusters 640, 642, respectively, despite
being physically located on the same rack 402. In other
words, the network bandwidths to/from nodes 410 and 412
may be such that computing resource node 410 is able to
transfer data faster to or from nodes 414 and 416 on rack 404
than with node 412.
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Resource allocation process 244 uses the assignments of
computing resource nodes 410-416 to virtual clusters 640-
644, to schedule and assign the map-reduce tasks to com-
puting resource nodes 410-416. For example, assume that a
mapper task is executed in a VM on computing resource
node 410. In such a case, resource allocation process 244
may attempt to place the reducer task that receives the output
data set from the mapper task also on computing resource
node 410. If insufficient computing resources are available
on node 410, resource allocation process 244 may then
attempt to assign the reducer task to either of nodes 414 or
416, depending on which of the two node has the highest
shared bandwidth with resource node 410.

FIG. 8 illustrates an example simplified procedure 800 for
scheduling task executions in a map-reduce computing job
using virtual clusters, in accordance with one or more
embodiments described herein. The procedure 800 starts at
step 805, and continue to step 810, where, as described in
greater detail above, information regarding a data set to be
processed by a map-reduce process is received. Such infor-
mation may include, for example, information regarding the
size of the data set, the current location of the data set (e.g.,
on which VM(s)/computing resource(s) the data set cur-
rently resides), or other such information. In various
embodiments, the received information may be about an
initial data set to be processed by a map-reduce computing
job or an intermediate data set generated during a phase of
the job (e.g., the intermediate data set may be a singular data
set generated by one mapper task or a combined data set
generated by multiple mapper tasks).

A set of virtual clusters for the map-reduce process are
generated in step 815 to represent a relationship between
computing resource nodes available for allocation to a
map-reduce task. In various embodiments, the clusters are
generated based in part on the bandwidths between the
computing resource devices/nodes that are eligible to pro-
cess a map-reduce task. The generated clusters are “virtual”
in that the computing resource nodes within a generated
cluster may be associated with different racks or other
computing devices. In other words, the virtual clusters are
agnostic to the physical relationships between the resource
devices and are based instead on the networking resources
available between the computing resources.

At step 820, the data set is associated with a map-reduce
process task. For example, at least a portion of an input data
set may be associated with a mapper task of the map-reduce
process. In another example, an intermediate data set (e.g.,
a data set generated by a mapper task) may be associated
with a reducer task that will process the intermediate data
set.

At step 825, the task is scheduled for execution by one of
the nodes of the virtual cluster (e.g., by the corresponding
resource node/device). In various embodiments, the node is
selected to execute the task based on the network bandwidth
between the node and the node at which the data set
currently resides. For example, a mapper task may be
scheduled on a computing resource node based on the
network bandwidth between the resource node and the node
on which at least a portion of the input data set resides. In
another example, a VM may be spawned on a resource node
to execute a reducer task based on the bandwidth between
the node and the node at which an intermediate data set
resides. Procedure 800 then ends at step 830 or may be
repeated any number of times across different phases of a
multi-phase, distributed computing process.

FIG. 9 illustrates an example simplified procedure 900 for
generating virtual clusters of computing resources for a
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map-reduce process, in accordance with one or more
embodiments described herein. The procedure 900 begins at
step 905, and continues to step 910, where, as described in
greater detail above, network data is received. The network
data may include information regarding the network topol-
ogy (e.g., how the networked devices are interconnected)
and/or the network resources associated with the devices on
the network. For example, the received data may include
information regarding the total or available bandwidths
between the networked devices.

At step 915 the available bandwidths between computing
resource nodes in the network are determined. For example,
bandwidths between two mainframe racks or two blade
servers may be determined using the received network data.
In various cases, the bandwidth information may be based
on the named throughput of the computing resource devices,
the available bandwidth between the devices (e.g., by sub-
tracting out any bandwidth used by other processes), or the
like.

At step 920, a weighted graph is generated using the
network topology for the computing resource devices. Each
vertex of the graph may represent a different computing
resource and each edge of the graph may represent a network
connection between computing resources. The edges may be
weighted based on the bandwidth that exists between the
computing resources, such as the actual or named band-
widths between the devices.

At step 925, the vertices of the graph are assigned to
virtual clusters based on the weights of the graph edges
between the vertices. In one embodiment, the virtual clusters
are formed such that the inter-cluster bandwidths are much
lower than the intra-cluster bandwidths. In further embodi-
ments, other clustering techniques may be used to limit the
total number of clusters, ensure that a particular cluster has
as given inter- or intra-cluster bandwidth, or satisfy any
number of other constraints. Procedure 900 then ends at step
930 or may be repeated, such as when a network topology
change notification is received.

FIG. 10 illustrates an example simplified procedure 1000
for using virtual clusters within a rack aware scheduler, in
accordance with one or more embodiments described herein.
The procedure 1000 begins at step 1005, and proceeds to
step 1010 in which virtual clusters are formed. The virtual
clusters may include computing resource nodes that corre-
spond to computing resource devices, such as racks, servers,
etc. In various embodiments, the virtual clusters may be
formed, in accordance with procedure 900 shown in FIG. 9.

At step 1015, each virtual cluster formed in step 1010 may
be represented as a physical data rack in the computing
environment. For example, a virtual cluster C, containing
computing resource nodes located on different racks may be
represented as a particular rack,. Procedure 1000 then con-
tinues on to step 1020 in which the virtual clusters are
provided to a rack-aware scheduler process. In various
embodiments, the rack-aware scheduler process is config-
ured to apply a naive scheduling methodology to schedule
tasks (e.g., based simply on the physical relationships of
computing resource nodes and mainframe racks). In such
cases, the rack-aware scheduler may be “tricked” into using
the virtual clusters in lieu of the physical racks, to make task
scheduling decisions. Process 1000 then ends at step 1025.

It should be noted that while certain steps within proce-
dures 800-1000 may be optional as described above, the
steps shown in FIGS. 8-10 are merely examples for illus-
tration and certain other steps may be included or excluded
as desired. Further, while a particular order of the steps is
shown, this ordering is merely illustrative, and any suitable
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arrangement of the steps may be utilized without departing
from the scope of the embodiments herein.

The techniques described herein, therefore, provide for a
principled approach that is based on unsupervised learning
of the underlying network to tune a map-reduce scheduler.
The approach is not based on arbitrary heuristic or homo-
geneous network resource assumptions, but instead is based
on the throughputs between computing resources. The
approach can also work in constrained networks and does
not force any action on behalf of switches and routers. Thus
the techniques described herein can be deployed in brown-
field networks, in some embodiments.

While there have been shown and described illustrative
embodiments that provide for allocating resources to process
data sets in a multi-phase process, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the embodiments herein. For
example, the embodiments herein have been shown and
described primarily with respect to a MapReduce process.
However, the embodiments in their broader sense are not as
limited, and may, in fact, be used with other types of
distributed computing processes that perform tasks in mul-
tiple phases. The foregoing description has been directed to
specific embodiments. It will be apparent, however, that
other variations and modifications may be made to the
described embodiments, with the attainment of some or all
of their advantages. For instance, it is expressly contem-
plated that the components and/or elements described herein
can be implemented as software being stored on a tangible
(non-transitory) computer-readable medium (e.g., disks/
CDs/RAM/EEPROM/etc.) having program instructions
executing on a computer, hardware, firmware, or a combi-
nation thereof. Accordingly this description is to be taken
only by way of example and not to otherwise limit the scope
of the embodiments herein. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

What is claimed is:
1. A method comprising:
receiving, at a device, information regarding a data set to
be processed by a map-reduce process, wherein the
map-reduce process comprises a rack-aware scheduler;

generating a set of virtual clusters for the map-reduce
process based on network bandwidths between nodes
of the virtual clusters, each node of a virtual cluster
corresponding to a resource device, wherein the set of
virtual clusters are generated such that intra-cluster
bandwidths in the set are greater than inter-cluster
bandwidths in the set;

associating the data set with a map-reduce process task;

and

scheduling, by the rack-aware scheduler, the execution of

the task by a node of the virtual clusters based on the
network bandwidth between the node and a source
node on which the data set resides, wherein the virtual
clusters are used by the rack-aware scheduler in lieu of
a physical rack to make scheduling decisions.

2. The method as in claim 1, wherein the bandwidth
between two nodes of the virtual clusters corresponds to a
maximum possible bandwidth between the two nodes.

3. The method as in claim 1, wherein the bandwidth
between two nodes of the virtual clusters corresponds to an
available bandwidth calculated by subtracting the bandwidth
used by other processes on the two nodes from the maximum
possible bandwidth between the two nodes.
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4. The method as in claim 1, further comprising:

receiving a network topology change notification;

determining bandwidths between resource devices in the
changed network topology; and

generating a new set of virtual clusters based on the

bandwidths in the changed network topology.

5. The method as in claim 1, further comprising:

compressing data transferred between nodes of different

virtual clusters.

6. The method as in claim 1, further comprising:

receiving network data that comprises a network topol-

ogy;

determining bandwidths between computing resource

nodes in the network topology;

forming a weighted graph using the computing resource

nodes as vertices of the graph, wherein edges in the
graph between vertices represent network connections
between the resource nodes that are weighted using the
bandwidth between the resource nodes;

assigning the graph vertices to the virtual clusters.

7. The method as in claim 1, wherein the virtual clusters
are treated as virtual mainframe racks by the rack-aware
scheduler.

8. An apparatus comprising:

one or more network interfaces configured to communi-

cate in a computer network;

a processor configured to execute one or more processes;

and

a memory configured to store a process executable by the

processor, the process when executed operable to:

receive information regarding a data set to be processed
by a map-reduce process, wherein the map-reduce
process comprises a rack-aware scheduler;

generate a set of virtual clusters for the map-reduce
process based on network bandwidths between
nodes of the virtual clusters, each node of a virtual
cluster corresponding to a resource device, wherein
the set of virtual clusters are generated such that
intra-cluster bandwidths in the set are greater than
inter-cluster bandwidths in the set;

associating the data set with a map-reduce process task;
and

scheduling, by the rack-aware scheduler, the execution
of the task by a node of the virtual clusters based on
the network bandwidth between the node and a
source node on which the data set resides, wherein
the virtual clusters are used by the rack-aware sched-
uler in lieu of a physical rack to make scheduling
decisions.

9. The apparatus as in claim 8, wherein the bandwidth
between two nodes of the virtual clusters corresponds to a
maximum possible bandwidth between the two nodes.
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10. The apparatus as in claim 8, wherein the bandwidth
between two nodes of the virtual clusters corresponds to an
available bandwidth calculated by subtracting the bandwidth
used by other processes on the two nodes from the maximum
possible bandwidth between the two nodes.

11. The apparatus as in claim 8, wherein the process is
operable to:

receive a network topology change notification;

determine bandwidths between resource devices in the

changed network topology; and

generate a new set of virtual clusters based on the band-

widths in the changed network topology.

12. The apparatus as in claim 8, wherein the process is
operable to:

compress data transferred between nodes of different

virtual clusters.

13. The apparatus as in claim 8, wherein the task com-
prises a reducer task.

14. The apparatus as in claim 8, wherein the virtual
clusters are treated as virtual mainframe racks by the rack-
aware scheduler.

15. A tangible, non-transitory, computer-readable media
having software encoded thereon, the software, when
executed by a processor, operable to:

receive information regarding a data set to be processed

by a map-reduce process, wherein the map-reduce
process comprises a rack-aware scheduler;

generate a set of virtual clusters for the map-reduce

process based on network bandwidths between nodes
of the virtual clusters, each node of a virtual cluster
corresponding to a resource device, wherein the set of
virtual clusters are generated such that intra-cluster
bandwidths in the set are greater than inter-cluster
bandwidths in the set;

associate the data set with a map-reduce process task; and

schedule, via the rack-aware scheduler, the execution of

the task by a node of the virtual clusters based on the
network bandwidth between the node and a source
node on which the data set resides, wherein the virtual
clusters are used by the rack-aware scheduler in lieu of
a physical rack to make scheduling decisions.

16. The computer-readable media as in claim 15, wherein
the software, when executed by the processor, is operable to:

receive a network topology change notification;

determine bandwidths between resource devices in the
changed network topology; and

generate a new set of virtual clusters based on the band-
widths in the changed network topology.
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